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The contact problem o[ the indentation of an elliptic paraboloid into one side of a spatial wedge, the other side of wiaieh is free 
from stresses, is investigated without introducing any limitations on the remoteness of the punch from the edge of the wedge 
and on the aperture angle of the wedge. In the ease when the punch approaches close to the edge, the method of non-linear 
boundary equations of 1:be Hammerstein type is used [1, 2], which enables the normal eonta~ pressures and the unknown c.ontact 
area to be determined simultaneously. The kernel of the integral equation of the contact problem is then regularized both outside 
the edge and on the edge of the wedge. The solution obtained agrees well with that obtained in [3], constructed using the asymptotic 
"large ~," method, which is effective when the punch is suffidently far from the edge of the wedge, when the contact area can 
be assumed to be an ellipse, and also with the exact solution of the corresponding contact problem for a haft-space [4]. A numerical 
analysis of the asymmetry of the contact area, the dependence of the indenting force on the settling of the punch, and the effective 
stresses at the point of initial contact for different aperture angles of the wedge and two orientations of the elliptic paraboloid 
with respect to the edge is carried out for values of the parameters of the problem given in [5]. 

The  me thod  o f  finite e lements  was used previously in [6] to investigate the contact  p rob lem for  a qua r t e r  
o f  space for  a rec tangula r  contac t  area.  

1. Suppose  tha t  ,, rigid punch  whose  surface is an elliptic pa rabo lo idf ( r ,  z) = (r-  a)2/(2Ra) + z2/(2R2) 
is pressed into the  side (p = tx o f  an elastic th ree-d imens iona l  wedge  with aper tu re  angle ¢t (r, 9 and  z 
are  the  cylindrical coord ina tes  and the z axis coincides with the  edge of  the  wedge)  by a force  P appl ied  
a long the r axis at  a dis tance H f rom the edge.  D u e  to the  act ion of  the  force  P appl ied along the  r axis 
at a dis tance H f rom the edge.  Due  to the action of  the force  P the  punch  settles an a m o u n t  fi and  
ro ta tes  th rough  an angle y abou t  the straight  line r = a. Outs ide  the contac t  a rea  there  is no  load  on  
the side 9 = o~. We neglect  the friction forces  be tween  the wedge  and  the punch.  T h e  side 9 = 0 is 
a ssumed  to be  stre,~s-free. I t  is required  to de te rmine ,  for  specified values of  8, T, a,  R1, R2, the  contac t  
a rea  f~, the  dis tr ibut ion funct ion o f  the no rma l  contact  stresses o , ( p ,  tz, z) = --q(r, z) ((r, z) e t)) ,  and  
also the  quant i t ies  P and  H.  

We will a s sume  t]hat the  a rea  t)  is comple te ly  conta ined  within a rectangle  S with cent re  on  the  r axis 
and semiaxes b and  c (b I> c). T h e  integral equat ion  and inequality, to which the solution of  this p rob l em 
can be  reduced ,  have  the  fo rm [1, 3] (where  G is the shear  modulus  and v is Poisson's  ra t io)  

O~K(MN)q(N)d~=g(M); q(M)~>0,  M e t )  
S 

OJK(M,N)q(N)d~z N>g(M); q ( M ) = 0 ,  M ~ ( S \ ~ )  
s 

M=(r,z), N=(x,y), 0 = ( I - v ) / G ,  g(r,z)=2•(8+y(r-a)-f(r,z)) 

K(r,z, x,y) = 1 / R+ F(r,z,x,y), R = 4 ( r -  x) 2 + (z - y)2 

F(r,z,x,y)= 4_-~77{shlu(W(u)-cthlu)Ki.(~x)+ 
oo 

+sh ~-~[ W+ (u)F+ (u,[~x)- W (u)F_ (u,~lx)l}riu(~r)cos~l(z- y)d~tu 

(1.1) 

(1.2) 
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F+(u,~x)=(l-2v)!Le_(u,y)[F+(y,~x)+ch~-Kiy(~x)]dy, O~ u<*~ (1.3) 

sh 7ttg± ( t)dt l_~(u,y) = 2ch ~Ush ~Y 2 

W±(u)=+ chau-T-cos~t W(u)= W+(u)-W_(u) ( Otth ±1 sin2a 
sh~u+usind '  2 , g±(t)~[cth-~-) chou:gcos2¢x 

It is also assumed that a bounded region So = {M: g(M) > O} exists such that f / C  S0 C S. We will 
introduce the non-linear operators [1, 2] 

u+(M) = sup{~(M),0}, u- (M) = inf[u(M),0} 

and consider the operator equation 

To=0 (M¢S),  To---Ixu-+0K~+-g, g=const 

where ~± = a~-+(M), g = g(M) and K is an integral operator of the form 

(1.4) 

K u  + = j K ( M,  N)'o + ( N ) d S  u (1.5) 
S 

Theorem 1. If a~. = ~.(M) is the solution of Eq. (1.4), then (q = q(M~ = ~+, fl = {M: u. ~ 0}) is the 
solution of Eq. (1.1), where ~ ;~ 0 when S O = 0; conversely, if (q, fl) is the solution of Eq. (1.1), then 
u. = g-lg + q _ 0~lKq, M ~ S is the solution of Eq. (1.4). 

Theorem 2. For a unique solution a~. e L2(S ) of Eq. (1.4) to exist it is necessary and sufficient that 
the function ~0 = ~0(M), which serves as the solution of the equation (e. > 0) 

e,~++Bx~-+OKD + =g (M~S)  (1.6) 

should satisfy the condition 

IIx>0llL2~C, ~,~(0,~,o], ~0=const>0 

where the constant C is independent of e,. 
Equation (1.6) has a solution by virtue of the principle of contractive mappings for sufficiently large 

values of Ix [21 . 

Theorem 3. Suppose ul(M) and 'o2(M ) are the solutions of Eq. (1.4) when g = gx and Ix = Ix2, respec- 
tively (Ix1 ~ Ix2). Then u](M) = ~ ( M ) .  

The proofs of these three theorems, which are key theorems for the method of non-linear boundary 
equations, repeat the proofs of the corresponding theorems in [1]. Here we use the fact that the integral 
operator K of the form (1.5) is completely continuous, self-conjugate, strictly positive, and its kernel 
K(M, Pc') possesses a weak singularity. 

To determine the quantities P and H we must add to Eq. (1.4) the following two integral equations 
of equilibrium 

~ q( M)df~M = P, ~rq( M)d~ M = PH (1.7) 
t2 

For a numerical solution of Eq. (1.4) we will use Krasnosel'skii's method [7], which is based on the 
construction of successive approximations using the formulae 

'u,,+~ = "o,, - (Q"o, , ) -~  To,, (1 .8)  

'On ='O,,(M), n=0,1,2 .... "Uo=g 



The spatial contact problem for an elastic wedge with unknown contact area 783 

where Q is a differentiable operator which approximates the operator T of the form (1.4) quite well in 
a uniform metric, and has the form'[" 

Q'o = I.t( V - Q(o ) + OKQ(o- g 

I O, "1.) < --81 
QlU= ~ ( u - ~ u 2 1 e l ) + ~ e t ,  lute<el (1.9) 

[~, 'o>~t >0 

where, by choosing; the constant el, we can endeavour to approximate the operator Twith any accuracy 
specified in advance. 

In view of the symmetry of the problem with respect to z it is sufficient to consider solely the upper 
half of the rectangle S, which we will cover with a net of m nodes with spacing hl along the r axis and 
h2 along the z axis (in the calculations m = 81). When calculating the values of the function K(M, N) 
of the form (1.2) at these nodes its singularity outside the edge of the wedge is smoothed using the 
formulae 

Il R---~ Il R., R. =4(r -x )2  +(z-y)2 +~, (1.10) 

and on the edge 

K(O,z,x,y)---} Aol R O, Ro =4X2 +(z-y)2 +8. 

A0=~ 2{x+sin2cx 2 i  - ~ 
2(¢t 2 _sin2 a ) + th {W+(u)F+(u)-W_(u)F_(u)}x 

x cos[ u In (( R 0 +1 z - yl ) / (x + ~ - .  ))]du 

(1.11) 

F±(u ) - (1 - 2v)TL+ (u ,y)Fl(y)dy = it(1 - 2v)L+ (u, 0), 
o 2 

Le (u,0) = +re I q:costx ch x---~u Jth ~ gt g± (t) dt 
0t+sintx 2 0 2 chnt+chrcu 

0 ~< u < ~ (1.12) 

When deriving (2.11) and (1.12) we took into account the fact that K/u(0) = ~6(u) (6 is the Dirac 
function). It can be shown that the regularizing parameter in (1.10)-(1.12) must be related to the net 
spacings ha and h2 (we assumed 6. = h~h2/16 in the calculations). 

2. If  the rectangle S does not reach the edge of the wedge, we place its centre at the point r = a, z 
= 0 and introduce the following dimensionless quantities and notation 

r -a=r 'b ,  x - a = x ' b ,  z=z'b, y=y'b, ~i=~'b, H=H'b 

A=b/(2Ri) ,  B=b/(2R2), Z.=a/b, E=c/b 

Oq(r,z)=2gq'(r',z'), OP=2nb2p ", S'---~S, f2"---~ 

(2.1) 

It is obvious that formulae (2.1) hold when X > e when the rectangle S is elongated along the z axis 
(R1 ~< R2) or Z > 1 when it is elongated along the r axis (R1 t> R2). When ~. ~< e (Ra ~< R2) or X ~< 1 (R1 
~> R2) we will assume that one side of the rectangle is situated on the edge of the wedge, and we will 
take as its centre the, point r = c, z = 0 when R1 ~< R20r the point r = b, z = 0 when R1 ~> R2. In these 
cases we will also use the notation (2.1), replacing the first two equations of (2.1) by r - c = r'b, x - c 
= x'b when RI ~< R2 or r - b=  r'b, x - b = x'b when R1 I> R2. We will henceforth omit the primes, 

The dimensionless parameter ~. represents the relative remoteness of the punch from the edge of 
the wedge. 

tGAI.ANOV B. A. The method of non-linear boundary equations in contact problems with unknown contact areas. Doctorate 
dissertation, Kiev, 1987. 
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To debug the computer program which we developed we used the following: 
(a) the exact solution of the axisymmetric contact problem [8], which, when ct = ~, T = 0, ~ = 8 = A = B = 1 

(~. and v can have any values) has the form 

q(r , z )  = qo aJi - (r  I c I )2 _ (z / c 2 )2 

q0 = 2 ~  / rc 2 , C I = C 2 = 1 / N/2 (2.2) 

(b) the exact solution of the problem of the indentation of an elliptic paraboloid into a half-space [4] (a  = ~, 
= 0.5, 8 = 1, 7 = 0,A = 2, B = 1; ~. and v can have any values), defined by formula (2.2) for q0 = 0.348, Cl = 

0.469 and c2 = 0.744; 
(c) the solution obtained using the asymptotic "large ~." method [3] (tx = rd2, v = 0.3, ~. = 2, ~ = 0.5, 8 = 1, 

T = --0.0450,A = 2.19 and B = 1), which is found from (2.2)with q0 = 0.326, cl = 0.422 and c2 = 0.704. 
The results of a comparison of solutions (a)-(c) at nine nodes on the r axis with the corresponding values obtained 

using the computer program show that the difference in cases (a) and (b) is less than 3%, while in case (c) it does 
not exceed 12%. 

Values of  the indenting force 103p as a funct ion o f  the settling o f  the punch  1035 are given in 
Table 1 for  different values o f  ot and two orientat ions o f  the punch  with respect  to the edge. Here  
v = 0.3, ~, = 0, e = 0.15, T = 0 a n d A  = 0.005 and B = 0.1 (up to values o f  a = 180 ° inc lus ive )o rA = 
0.1 and B = 0.005 (below the row corresponding  to a = 180°); for a = 180 ° we give the exact values 
[4]. In  view of  the regularities o f  (1.11) and (1.12) the value ~. = 0 corresponds  to the case when the 
point  at which the punch  and the wedge initially touch "a lmost"  reaches the edge. An  analysis o f  these 
results, and also o f  the corresponding calculations, carried out  for  E = 0.1 and e = 0.25 shows that  when  
a ~- 90 ° the value o f  P = P(8) as ~, ~ 0 is independent  o f  which axes o f  coordinates  (r or  z) the elliptic 
paraboloid  is e longated along. 

In  Figs 1 and 2 the upper  half  o f  the contact  areas ~ are shown hatched for angles a = 65 ° (Fig. 1) 
and a = 135 ° (Fig. 2). Here  v = 0.3, e = 0.15, 8 = 0.005, T = 0 ,A  = 0.1 a n d B  = 0.005; for  ~, = 0 the  
boundary  o f  the region ~ is shown by the cont inuous curve, while for ~, = e it is shown by the dashed 
curve. It  can be seen that  for  a = 65 ° the area o f  the region ~ is considerably less than for  a = 135 ° 
(this also occurs in the case w h e n A  < B). For  fairly acute angles a and ~ ~ 0 breakdown of  the contact  
is observed in the ne ighbourhood  of  the point  where  the punch  and the wedge initially touch (as though  
the  edge withdraws), particularly when  the punch  is e longated along the edge (Fig. 1). 

3. After  solving the contact  problem, knowing the function q(r ,  z )  and the contact  area f~, it is possible 
to determine the effective dimensionless stress Oe = 0oe/(2x), which plays an impor tant  role in 
applications. As an example (in the f ramework  of  the concept  of  surface strength) we will de termine 
o~ at the point  where  the punch  and the wedge initially touch r = a0, 0 = 0t, z = 0 (a0 = X - e when  
~< e and R 1 ~< R2, a0 = ~, - 1 when  ~, <~ 1 and R1 I> R2, while in o ther  cases a0 = 0) f rom the following 
formulae  (we omit  the primes) 

o~ = 2 -Y2 [(G 1 - G 2)2 + (02 _ 03)2 + (ffl - G3)2 ]Y2 (3.1) 

Table 1 

ct, deg 1038 = 4 4,5 5 5,5 6 6.5 

65 0,116 0.141 0,167 0,194 0,222 0.250 
90 0,210 0,255 0,302 0.351 0,400 0,453 
110 0.253 0,306 0,361 0,419 0,478 0,541 
135 0,311 0.374 0.441 0.510 0,581 0,657 
180 0,60 i 0.717 0.840 0,969 1, I 0 1.24 
i 35 0,440 0.527 0,616 0.7 ! 3 0,812 0.913 
i 10 0,314 0,376 0,441 0.509 0,581 0.654 
90 0.215 0.257 0,302 0.348 0,396 0.447 
65 0,0813 0.0967 0,113 0,131 0,150 0.168 
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~1 = Sin 

v (3u~ 3u~) 3u~ v 
° '  = 1---~'-~-r + az J + a r - 1 - v  q°' 

v (au~ ~gu~)+,3u~, v 
03 = l - - ~ - - ~ r  + 3Z . 3z l - v  q0' 

3u r 32~o + 9~ 1-2v 
~r = ~r 2 4 ( l -v )  ~x - 2( l -v)  ~2 

3u~ 32@o + X 
~Z = ~ - - ' ~ -  4 ( 1 - 7 )  ~3 

32@o 
~r 2 

32~o 
3z 2 

2 3r 2 

(~2 = --qo 

qo =q(ao,0) 

2(1 ~2v) [. ~ f El (p,t,z)K, (p,t)dpdtd'c 
71; 000  

2(1-2v) "0"~ 
2 f ~ ~EI (p't''c)pKit(~t)dpdtd'c 

000 
a ~2(I) 2 -- 4(l__~2V)7~E2(p,t)K.(p,t)dpdt 

- o o  

(3.2) 
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• 0 I .  ~1~ 1 01, ~0 2 4r t -  ~**** 
- "_-S-f v; I ~E2(p,t)pReKI+it(Lp)dp dt Z2 = sm2"--~r  - c ° s ~  ~r n o0 

O~ 32(I)1 O~ 0201)2 _ 
Z3 = sin cos 

2 0z 2 2 Oz 2 
4 (1__.~ v)~j~E2(p,t)PKit(~,p)dpdt 

00 

K. (p, t) = PKit (~p) - (t Im Kl+it (2~p) - Re Kl+it (~.p)) I ~, 

sh ~t sh nx ott o.t El(p,t,x)= 7-----:---. VW+('c)cth--E+(x,p)-W (x ) th - -E_ (x ,p ) ]  
cn nt + cla nx L 2 - 2 .1 

E2(p,t)=_2psinotshnt[ E+(t,p) E_(t,p) .] 
shott+tsin~ shou-tsino~ 

1 
E±(t,p) = O±(t,P)chntl2 I-S(t,p), S(t,p) =-.~-~dq(r,z)Kit(p(r+bo))Cospzdrdz 

O±(t,p)=(l-2v)iL+_ (t,y)[O+_(y,p)+ch-~S(y,p)ldy, 0~<t<*o (3.3) 

Here % (n = 1, 2, 3) are the principal stresses, ur and u z are the components of  the displacement 
vector, On = On(r, 9, z) (n = 0, 1, 2) are the functions which occur in the Papkovich-Neuber repre- 
sentation [3], and b0 = X - a0. 

To solve the Fredholm integral equations of the second kind (3.3), and also (1.3) and (1.12) the method 
of  mechanical quadratures is employed using Gauss' quadrature formula. 

If we put  ~t = n in (3.1)-(3.3) and assume that the function q(r, z) is defined in the elliptic region t2 
by the relation 

q( r,z) = qo 4 1 - ( r - a o  ) 2 l a2. - z 2 I b2, (3.4) 

we obtain the following formula [9] 

o e =(1-2v)q0  1 - ~ f ~ / ( 1 + [ ~ )  (3.5) 

where ~ = b./a. if a. ~ b. and f3 = a./b. if a .  ~< b,. 
When deriving (3.5) we took into account the values of  the integrals [10, No. 8.432.4 and No. 3.984.4] 

2 777 sh•tshnx [- . rex . ~t . 7ix nt'] . 
_'ST J J J T . Ictla--ctla--+tta--th--~-IK.(p,t)× 
n o'oocnnt+cnnxl_ 2 2 2 2 J 

f d 
2"[-- 2n~i(r- a o)~i(z) (3.6) × K n ( p( r + bo ) )cos pzdpdtd, C z 

: -~ZZL(r-a~ 2 +z / 

- ' ~  -~z[ z ] a'q° q(r,z) (r_a~i2+z2 drdZ=a,+b" 

In the second integral (3.6) the function q(r, z) is defined by 0 .4 )  and is the corresponding ellipse 
with centre at the point r = a0, z = 0. 

Table 2 shows values of the effective stresses 103Or at the point r = a0, ~0 = or, z = 0 as a function of 
1035 for different a and two orientations of the punch. Here  v = 0.3, E = 0.15, T = 0, X = 0.35, A = 
0.005 and B = 0.1 up to values of ~t = 180 ° inclusive, or X = 0.15, A = 0.1 and B = 0.005 below the 
row corresponding to ~t = 180 °. When a = 180 °, when the orientation of  the punch and the value of 
~. play no role, the calculations were carried out using (3.5) in accordance with the exact solution of 
the problem [4]. The calculations show that, in the region of  the edge, the dependence of ae on ~ and 
also on X may be non-monotonic. When the elliptic paraboloid approaches the edge along its semi- 
major axis, the values of  oe are usually larger than when approaching along the semi-minor axis. It can 
be seen by comparing the first and third rows of Table 2 that when a = 110" more dangerous effective 
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Ct, deg 1035 = 4 4.5 5 5.5 6 6.5 

65 1,08 1.35 i ,33 1,36 1.33 1.6 I 
90 1.48 1,45 1,70 1,74 1.71 2.06 
I 10 1.48 1.70 1,74 1.75 1.96 1.69 
135 1.21 1.44 1,44 1,74 1,31 0.924 
180 I. 17 1,24 1.31 1,37 1.43 1.49 
135 1,03 1,08 1,15 1,21 1.26 1,33 
1 ! 0 0.952 1.02 1.08 1.15 1.21 1.28 
90 0,832 0.894 0,943 0.996 1,05 I, I 0 
65 0,501 0.525 0,549 0,573 0.595 0.610 

stresses occur than when a = 65 °. As follows from (3.1)-(3.3), ae --> oo as ~ --> 0, provided q0 ~ 0 when 
~. = 0, i.e. contact is not broken off. If as Z --> 0 and for fairly acute angles o~ contact is broken off in 
the neighbourhood of  the point where the punch and the wedge initially touch, we will have ae = 0 at 
this point [11]. 

I wish to thank V. M. Aleksandrov and B. A. Galanov for discussing the method described in [1, 2]. 
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